If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x=148
We move all terms to the left:
x^2+2x-(148)=0
a = 1; b = 2; c = -148;
Δ = b2-4ac
Δ = 22-4·1·(-148)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{149}}{2*1}=\frac{-2-2\sqrt{149}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{149}}{2*1}=\frac{-2+2\sqrt{149}}{2} $
| 7x*4=39 | | -4=2(x-9 | | 1/4(5b)+11)=19 | | 5/7x+6=31 | | 122=(14x-3)-(9x+2) | | -12=4(x=-5) | | (x+4)^2=64 | | 36(5-x^2)=0 | | 9/12x=2/12x-7/4 | | 1/5y=31 | | x/2+x/6=3/4+1 | | -5(x+3)=-5 | | 12.25=-16t^2+20t+6 | | 2=-x^2+6 | | a/2+2/3=51/3 | | -2=7x+8(x-4) | | 2(w+2)-7w=-36 | | 20+(2/3x)=15+8x | | -15=-6u+3(u-7) | | 3x=1333 | | 0.08s+250=420 | | x^2+6x+18=2-0.5x | | 2x–5.x=0 | | 1/3(60+2x)=15+8x | | 5m^2-7m-2=0 | | -16=2v+29(v+6) | | 0.33333333333333333(60+2x)=15+8x | | 1/5x+6=26 | | 17=-2y+5(y-2) | | 1/2*200x=50 | | ?x4/7=3/7 | | 1/3x=2x+15 |